Your assignment is to prepare and submit a paper on truss optimisation. Ghasemi et al. (1999) have revealed the appropriateness of the genetic algorithms to deal with the large trusses that have numerous indefinite variables. This study shows that how an algorithm of our design can be employed to match this previous study. The paper will hugely concentrate over the application of genetic algorithm to trusses developed under indefinite conditions (Ganzerli et al., 2003). 1.1. Background Galileo Galilei has been recognized as the first scientist by the Coello Coello et al. (1994), who studied optimization of structures over the bending of beams in his work. Over the period of time, this subject has developed and become an area of engineering, in itself, which is known as the structural optimization. For the last few decades, the rising interest towards this area has been because of the availability of powerful and cheap computers as well as due to the rapid progress in the analytic and optimization methods for the structures (Soh and Yang, 1998). The optimization of the weight of the structures is of great importance to many fields of engineering. It might be linked to cost optimization, in some aspects, as it clearly tends towards an optimal usage of the materials. The weight optimized structures, in civil engineering, are very convenient as the construction as well as the transportation work in, relation to the build-up, is simple. The engagement of the least possible share of the load capacity by the structure itself is another benefit of developing a structure with its weight being optimized. Also, in the aircraft and car industries, the structural optimization is highly important since a lighter structure leads to a better fuel efficiency. The use of genetic algorithms is an efficient optimization technique. GA is a form of evolutionary programming (Alander, 1999) and most likely known as the best optimization technique of the present time (Ashlock, 2006). It provokes the evolutionary principle of survival of the fittest through aggregating the optimum solutions to a problem in numerous generations in order to augment the outcome gradually. The elementary population of solutions is constructed on the random basis and then along with the evolution, the best solutions are aggregated in each generation until they converged in to an optimal solution (Gold Berg, 1989). 1.2. Literature Review Over the previous two decades, the genetic algorithms have been used in search for an optimal design solution for trusses that has been explained in numerous scientific reports. However the optimization in the majority of these studies does not relate to shape, size and topology simultaneously. In general, the topology of the truss is fixed that means the inner connectivity of the members is constant (Ravindran and Ragsdell, 2006). The most frequently used method to deal with the optimization of the truss topology is the ground structure method that has been used by Hajela & Lee (1995) and Deb & Gulati (2000) in their work. An extremely connected ground structure having numerous nodes and elements, in the ground structure method, is gradually minimized until just the basic required elements are left (Ohsaki, 2005).


Homework Essay Writers

Lets Start Working

Plagiarism Free

We use anti-plagiarism software to ensure you get high-quality, unique papers. Besides, our writers have a zero plagiarism mentality

On Time Delivery

Your essay will be delivered strictly within the deadline.  If you have an urgent order, we can do it!

Money Back Guarantee

We offer warranty service, including free revisions, and a right to request a refund incase your expectations are not met!


Our Advantage

  • Say “NO” to plagiarism – FREE plagiarism report as an addition to your paper
  • The lowest prices that fit excellent quality
  • Authorship – you are the one who possesses the paper. We DO NOT re-sale or re-use any of them.


Our Freebies

  • Free Cover Page
  • Free Revisions
  • Free Reference Page
  • Free 24/7 support

Pin It on Pinterest

Share This